If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+100x-15000=0
a = 2; b = 100; c = -15000;
Δ = b2-4ac
Δ = 1002-4·2·(-15000)
Δ = 130000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{130000}=\sqrt{10000*13}=\sqrt{10000}*\sqrt{13}=100\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100\sqrt{13}}{2*2}=\frac{-100-100\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100\sqrt{13}}{2*2}=\frac{-100+100\sqrt{13}}{4} $
| 7-2x/3=-5 | | 4(8-x)=8(-2-3x)+148 | | n-3n=3-1n | | 2-5x=20-8x | | x+|3.6|=10.4 | | -1.5+x=5.25 | | 20y+7=22 | | 6(-5+x)=18 | | .4(5x+10)=1.3-(x+2) | | 2(x-23)=0 | | 6(x-2)-2(x-3)=8x+6 | | 46+8x=x-3 | | 32=16^x-1 | | -22x+12x+20-x=-2 | | 2x*5=25 | | 2(7x-7)+5=-3(2x+5)+4 | | 2(b-6)=12 | | 5x-6=14x | | 2x+10=7x-0 | | 15p-1+39p=3+40p | | -8/7=3/5y-1/2 | | 46+8x=x−3 | | 3x-4=3(x-1)+11 | | 8p^2-2=15p | | 3.5+6x=-0.5+6x | | 42=13x | | 15+20x=55 | | 7x-10-7x=-8 | | 4x-1=2(x-3)-5 | | 4/3=6y-5/3 | | (4x+6)-2x=(x+-6)+24 | | n+2=-10n10n-6 |